Koïos Intelligence https://koiosintelligence.ca/fr Delivering the next generation of intelligent systems for finance and insurance Tue, 18 Mar 2025 13:23:05 +0000 fr-CA hourly 1 https://wordpress.org/?v=6.1.7 https://koiosintelligence.ca/wp-content/uploads/2022/09/cropped-Koios-small-logo-Favicon-2-32x32.png Koïos Intelligence https://koiosintelligence.ca/fr 32 32 AI Chatbots for Insurance vs AI Insurance Virtual Assistants: Which is Right for Your Insurance Business? https://koiosintelligence.ca/fr/ai-chatbots-for-insurance-vs-ai-insurance-virtual-assistants-which-is-right-for-your-insurance-business/ https://koiosintelligence.ca/fr/ai-chatbots-for-insurance-vs-ai-insurance-virtual-assistants-which-is-right-for-your-insurance-business/#respond Tue, 18 Mar 2025 12:41:23 +0000 https://koiosintelligence.ca/?p=2335 AI Chatbots for Insurance vs AI Insurance Virtual Assistants: Which is Right for Your Insurance Business? Published on March 18, 2025 10 AI Terms Every Insurance Broker Must Know to Stay Competitive in 2025 - And Why Chatbots Aren’t Enough Published on February 5, 2025 Gabrielle Reid [...]

The post AI Chatbots for Insurance vs AI Insurance Virtual Assistants: Which is Right for Your Insurance Business? appeared first on Koïos Intelligence.

]]>

Chatbots IA pour l’assurance vs Assistants virtuels IA pour l’assurance : Quelle solution est la meilleure pour votre entreprise d’assurance ?

PUBLIÉ LE 18 MARS 2025

Gabrielle Reid

10 termes d'IA que tout courtier en assurance doit connaître pour rester compétitif en 2025 - et pourquoi les chatbots ne suffisent pas

Publié le 5 février 2025

Gabrielle Reid

Imaginez vous réveiller avec un arbre tombé sur votre toit. La dernière chose que vous voulez, c'est attendre 4 heures pour savoir si vous êtes couvert ou non. C'est pourquoi les assureurs se tournent vers des solutions basées sur l’IA, mais tous les assistants virtuels ne se valent pas. L’IA dans l’industrie de l’assurance est un outil puissant, mais comme toute technologie, son efficacité dépend de son intégration stratégique et de son optimisation. Sans une mise en œuvre adéquate et une bonne compréhension de son utilisation, vous risquez de prendre du retard pendant que vos concurrents plus avancés exploitent pleinement son potentiel.

Les chatbots et les assistants virtuels pour l’assurance poursuivent le même objectif : fournir des réponses aux clients et réduire le volume d’appels entrants. Comprendre la différence entre ces deux technologies peut aider votre cabinet ou votre agence à faire le bon choix pour améliorer l’expérience client.

Qu’est-ce qu’un chatbot pour l’assurance ?

Un chatbot d’assurance est une application numérique programmée pour répondre aux demandes des clients via des conversations automatisées. Ces bots peuvent fonctionner sur n'importe quelle interface textuelle, notamment les sites web, les applications mobiles et les plateformes de messagerie. Ils sont conçus pour fournir des réponses instantanées aux questions fréquentes.

Bien que les chatbots puissent réduire le volume d’appels pour des demandes basiques comme les mises à jour de police, les révisions de contrat, les réclamations ou les renouvellements, leurs réponses restent limitées et efficaces uniquement pour les requêtes simples. Pour les clients ayant des questions plus complexes, ces interactions peuvent vite devenir frustrantes et rallonger inutilement le processus avant qu’un agent humain ne prenne finalement le relais.

Qu’est-ce qu’un assistant virtuel pour l’assurance ?

Un assistant virtuel pour l’assurance fonctionne de manière similaire à un chatbot, mais avec une différence clé : il est propulsé par l’IA et utilise un moteur de règles ou le traitement du langage naturel (NLP) pour comprendre les demandes des utilisateurs et fournir des réponses pertinentes.

Contrairement aux chatbots, les assistants virtuels ne sont pas limités à des scripts prédéfinis. Ils utilisent le NLP pour interagir de manière plus humaine et s’améliorent continuellement grâce à l’apprentissage automatique. Cela leur permet d’offrir des réponses plus précises et adaptées aux besoins des clients.

Avantages et inconvénients des assistants virtuels IA par rapport aux chatbots

 

Avantages :

  • Gestion des demandes complexes : Contrairement aux chatbots, les assistants virtuels analysent le contexte des questions des clients et fournissent des solutions adaptées, comme des devis personnalisés, des mises à jour sur les réclamations et même des conseils, tout en réduisant le besoin d’intervention humaine.

  • Automatisation avancée: Au-delà des simples réponses aux questions, les assistants virtuels peuvent traiter des transactions, aider à la soumission de réclamations et recommander des polices adaptées aux données clients.

  • Interactions plus naturellesGrâce au NLP, ils comprennent mieux le contexte, le ton et l’intention des clients, rendant les échanges plus fluides et limitant les malentendus, ce qui réduit la frustration des clients.

  • Amélioration de la satisfaction clientEn fournissant des réponses précises et en limitant les transferts vers un agent humain, les assistants virtuels optimisent l’expérience client.

  • Apprentissage continu: Ces outils basés sur l’IA s’améliorent en permanence en apprenant de chaque interaction, garantissant une adaptation constante aux besoins des clients et aux nouvelles réglementations.

Inconvénients :

  • Coût d’implémentation plus élevé: Les assistants virtuels nécessitent un entraînement IA, une intégration des données et des capacités NLP, impliquant un investissement initial plus important. Cependant, ils permettent des économies significatives à long terme en réduisant la charge administrative et en libérant du temps pour des tâches à plus forte valeur ajoutée.

  • Exigence de qualité et de mise à jour des données: Leur performance dépend de la fiabilité des données sur lesquelles ils s’appuient. Un suivi régulier est nécessaire pour garantir leur précision, notamment pour rester conforme aux évolutions réglementaires du secteur de l’assurance. Vous ne voudriez pas que vos outils vous exposent à la non-conformité.

  • Risque d’interprétation erronée: Même si les assistants virtuels sont plus avancés que les chatbots, ils peuvent parfois mal interpréter des demandes trop complexes ou ambiguës, nécessitant alors l’intervention d’un agent humain. Cela dit, ils sont conçus pour faciliter cette transition vers un conseiller lorsque nécessaire.

Statistics

Tous les assistants virtuels pour l’assurance ne se valent pas. Olivo, la plateforme d’assurance développée par Koios, a démontré son efficacité sur le marché avec des résultats impressionnants :

  • Le taux de progression moyen dans le processus de devis est de 68% . Les clients utilisant Olivo abandonnent moins leur parcours d’achat.

  • 55% of clients complete Olivo’s long form quotation form to receive auto quotes VS the industry benchmark of 15-30%. That’s an increase of up to 266% compared to industry standards. OlivoOlivo provides more chances of converting form completion to leads.

  • Seulement 4 à 5% des utilisateurs d’Olivo demandent à parler à un agent humain.

Les chatbots ne sont qu’un début, mais voici le vrai défi :

Les chatbots sont déjà largement répandus dans l’assurance et constituent une première étape vers l'automatisation des interactions client. Dans un secteur où le service est attendu en temps réel, la rapidité, la disponibilité 24/7 et la fluidité des échanges sont essentielles. Cependant, les limites des chatbots, comme leur incapacité à gérer des demandes complexes et leur manque de personnalisation—peuvent vite engendrer de la frustration.

L’IA dans l’assurance, comme tout autre outil, doit être optimisée et correctement intégrée pour générer un réel impact sur votre entreprise. Mal maîtrisée, elle risque de vous freiner pendant que vos concurrents l’exploitent pleinement.

Présentant Olivo

Bot, un produit de Koios Intelligence, est un assistant virtuel d’assurance conçu avant tout pour l’expérience client. Pour les entreprises qui souhaitent rester en tête en matière de service client, les chatbots sont un bon point de départ, mais la véritable révolution réside dans des moteurs d’IA de pointe comme Olivo.

Développé pour optimiser l’efficacité des souscripteurs, agents et courtiers, Olivo propose une IA conversationnelle et des outils d’IA adaptés aux besoins changeants du marché de l’assurance.

BOOK A DEMO

The post AI Chatbots for Insurance vs AI Insurance Virtual Assistants: Which is Right for Your Insurance Business? appeared first on Koïos Intelligence.

]]>
https://koiosintelligence.ca/fr/ai-chatbots-for-insurance-vs-ai-insurance-virtual-assistants-which-is-right-for-your-insurance-business/feed/ 0
10 AI Terms Every Insurance Broker Must Know to Stay Competitive in 2025 – And Why Chatbots Aren’t Enough https://koiosintelligence.ca/fr/10-ai-terms-every-insurance-broker-must-know/ Wed, 05 Feb 2025 14:30:45 +0000 https://koiosintelligence.ca/?p=2279 10 AI Terms Every Insurance Broker Must Know to Stay Competitive in 2025 - And Why Chatbots Aren’t Enough Published on February 5, 2025 10 AI Terms Every Insurance Broker Must Know to Stay Competitive in 2025 - And Why Chatbots Aren’t Enough Published on February 5, 2025 [...]

The post 10 AI Terms Every Insurance Broker Must Know to Stay Competitive in 2025 – And Why Chatbots Aren’t Enough appeared first on Koïos Intelligence.

]]>
10 AI Terms Every Insurance Broker Must Know to Stay Competitive in 2025 - And Why Chatbots Aren’t Enough

10 termes d'IA que tout courtier en assurance doit connaître pour rester compétitif en 2025 - et pourquoi les chatbots ne suffisent pas

Publié le 5 février 2025

Gabrielle Reid

10 termes d'IA que tout courtier en assurance doit connaître pour rester compétitif en 2025 - et pourquoi les chatbots ne suffisent pas

Publié le 5 février 2025

Gabrielle Reid

Les outils alimentés par l'IA ne sont plus l'apanage des films de science-fiction ; ils s'intègrent désormais de manière cruciale aux processus commerciaux quotidiens. Il est indéniable que l'IA pourrait bientôt devenir une composante essentielle de la croissance des activités d'assurance, et négliger la mise en œuvre de la technologie de l'IA revient à négliger un acteur clé de la réussite de votre société de courtage.

Les chatbots d'assurance sont et ont été un ajout courant à de nombreux sites web de courtage d'assurance. S'ils ont joué un rôle essentiel dans la transition vers des outils d'IA plus performants, ils font pâle figure par rapport à d'autres évolutions. Nous y reviendrons un peu plus tard.

Restez au fait de cette évolution en vous armant de connaissances. Commençons par la terminologie.

Au fur et à mesure que la technologie de l'IA évolue et se développe, une nouvelle terminologie apparaît. Même si votre cabinet de courtage ou votre agence n'a pas besoin de posséder tous les nouveaux gadgets, il est essentiel de connaître les différents termes et leur lien avec les processus d'assurance pour savoir quels outils d'IA mettre en œuvre et lesquels ne pas utiliser.

Voici 10 des termes les plus essentiels de l'IA :

Agent AI

L'expression « agent d'IA » désigne un outil d'IA créé pour aider les clients et les prospects avec la ressemblance et les connaissances de vrais professionnels de l'assurance (humains !). Cela peut se manifester sous de nombreuses formes différentes, telles que des chatbots d'assurance, des forums de devis interactifs, des plateformes de communication ou autres.

Un « assistant virtuel d'assurance » a une fonction similaire à celle d'un agent d'intelligence artificielle. L'assistant virtuel d'assurance n'est qu'une autre façon fantaisiste de désigner un logiciel d'IA conversationnelle.

Cependant, contrairement à un chatbot d'assurance, un assistant virtuel d'assurance s'adapte et apprend de ses interactions avec les consommateurs, offrant des réponses plus complètes et proposant des solutions plutôt que des réponses scénarisées. Un assistant virtuel d'assurance est un chatbot d'assurance aux capacités infiniment plus étendues.

Chatbot assurance

Les chatbots d'assurance ont été la première exposition à l'IA pour de nombreux courtiers et agences. Cependant, un chatbot d'assurance et un assistant virtuel d'assurance ne sont pas une seule et même chose.

Bien qu'un chatbot d'assurance puisse certainement avoir ses avantages, son objectif inhérent est d'aider les sites web à répondre à des questions de base préprogrammées et à fournir des réponses scénarisées. Il ne s'adapte pas aux conversations en temps réel et ne stimule pas les interactions contextualisées, mais il peut être utile pour compenser une partie des appels téléphoniques pour des questions et des sujets de base.

L'IA conversationnelle

Le terme d'IA conversationnelle fait référence aux logiciels permettant aux machines non seulement de comprendre et de traiter le langage humain, mais aussi d'y répondre de manière naturelle. L'IA conversationnelle peut être utilisée pour alimenter les assistants virtuels d'assurance (comme le logiciel Olivo - nous y reviendrons plus tard), ainsi que des systèmes de reconnaissance vocale capables de prendre en charge des conversations sérieuses.

NLP (traitement du langage naturel)

NLP est l'abréviation de Natural Language Processing (traitement du langage naturel). Il s'agit d'une branche de l'IA centrée sur la capacité des ordinateurs à comprendre et à interpréter le langage humain de manière utile et significative. Le NLP contribue à combler le fossé entre la communication humaine et la compréhension des machines en analysant et en traitant le langage naturel.

ML (Machine Learning)

ML est l'abréviation de Machine Learning, un sous-ensemble de l'IA qui programme les ordinateurs pour qu'ils apprennent et fassent des prédictions ou prennent des décisions sans script explicite. Plutôt que d'adhérer à un code strict, l'apprentissage automatique utilise des modèles statistiques et des algorithmes pour analyser et apprendre des modèles à partir des données, améliorant ainsi les performances de vos outils d'IA avec le temps et l'expérience.

Analyse prédictive

L'analyse prédictive est un peu comme une boule de cristal, mais au lieu d'être alimentée par la magie, elle est alimentée par les données et l'IA.

L'analyse prédictive utilise des algorithmes, des statistiques et la ML pour identifier des modèles et prédire ce qui pourrait arriver ensuite. Pour l'assurance et la finance en particulier, cela signifie prévoir le comportement des clients et les tendances du marché afin de garder une longueur d'avance. Il s'agit d'un aspect incroyablement utile de l'IA qui peut aider les assureurs à prendre des décisions proactives, fondées sur des données, qui contribuent à améliorer la tarification et à accroître la satisfaction des consommateurs.

IA Stack

Une « pile d'IA » est la présentation en couches de différentes technologies et outils d'IA qui fonctionnent comme des partenaires pour développer et déployer des systèmes.

Une pile d'IA peut combiner plusieurs composants tels que la collecte de données, les cadres de ML, les plateformes de déploiement, la formation des modèles et les interfaces utilisateur. Pour les professionnels de l'assurance, une pile d'IA peut impliquer l'IA conversationnelle pour les assistants virtuels en contact avec les clients, la ML pour l'examen des interactions et la prise de décision, et plus encore.

Analyse des sentiments

Dans le domaine de l'IA, l'analyse des sentiments revient à donner aux algorithmes la capacité de « lire la salle ». Elle examine les interactions, qu'il s'agisse d'avis, de messages sur les médias sociaux ou d'e-mails, et détermine si le sentiment est positif, négatif ou neutre. L'analyse des sentiments est un outil d'IA extrêmement utile qui peut aider à prendre des décisions clés en fonction de la satisfaction des clients.

LLM (Large Language Model)

Le LLM (Large Language Model) est un modèle avancé d'apprentissage automatique formé sur de grandes quantités de données textuelles afin de comprendre et de générer des textes de type humain. Ce type de modèle est conçu pour traiter et produire du langage naturel en s'appuyant sur des techniques d'apprentissage en profondeur, en particulier des transformateurs, un type d'architecture de réseau neuronal.

Chatbots d'assurance et assistants virtuels d'assurance

Les chatbots d'assurance et les assistants virtuels d'assurance sont deux termes d'IA fréquemment utilisés dans le secteur de l'assurance. Les chatbots d'assurance gagnent en popularité et sont utilisés sur les sites web pour répondre aux questions de base, mais ils n'ont pas les capacités avancées des assistants virtuels d'assurance.

Olivode Koïos, est un assistant virtuel d'assurance qui va au-delà du chatbot d'assurance traditionnel. Si un chatbot d'assurance peut être un premier pas dans le monde de l'automatisation de l'assurance, il n'est rien comparé aux capacités d'un assistant virtuel d'assurance.

Voici quelques-unes des principales différences entre les deux :

Chatbot assurance Assistante virtuelle en assurance (Olivo)
Style d'interaction Questions et réponses textuelles Conversation et réponses adaptées/pertinentes
Capacité opérationnelle FAQ de base Consultation des politiques, analyse des risques, alertes de conformité
Capacité d'apprentissage Réponses préprogrammées Adaptative, elle apprend des données au fil du temps
Prise de décision en temps réel Non Oui

Les assistants virtuels d'assurance sont-ils l'avenir des courtiers d'assurance ?

Le secteur de l'assurance suscite de grandes attentes. L'impact de la hausse des coûts, du changement climatique et de l'augmentation des litiges pousse les clients à trouver une assurance plus rapidement, et les courtiers et les agences sont censés y répondre. Tous ces appels et toutes ces demandes peuvent rapidement submerger votre entreprise, et la solution réside dans l'IA.

Les assistants virtuels en assurance, comme Olivo, peuvent automatiser les tâches liées à l'assurance afin d'améliorer l'efficacité de votre entreprise et de permettre à votre équipe de gérer plus de prospects par personne. Même si la pression pour une couverture complète et peu coûteuse fait grimper la demande de réponses rapides, vous pouvez facilement y répondre et transformer ces clics rapides en clients fidèles.

Présentant Olivo

Olivo est la plateforme cloud de Koïos Intelligence alimentée par de grands modèles linguistiques (LLM) spécialisés dans un domaine, conçue pour révolutionner la chaîne de valeur de l'assurance.

Olivo permet de gérer de nombreux processus d'assurance, y compris l'établissement d'un devis. Compte tenu de la qualité de l'expérience client offerte par cet assistant virtuel flexible, environ 55 % des clients d'assurance utilisant Olivo fournissent toutes les informations nécessaires à l'obtention d'un devis, contre 15 à 30 % lorsqu'ils utilisent les formulaires web correspondants.

Au-delà de cela, seuls 4 à 5 % des clients demandent à être transférés vers un courtier ou un centre d'appel.

L'efficacité est le mot clé. Développée dans un souci d'efficacité pour les souscripteurs, les agents et les courtiers, Olivo propose des outils d'IA conversationnelle et d'IA aux entreprises qui s'adaptent à l'évolution des besoins du marché de l'industrie.

BOOK A DEMO

The post 10 AI Terms Every Insurance Broker Must Know to Stay Competitive in 2025 – And Why Chatbots Aren’t Enough appeared first on Koïos Intelligence.

]]>
Responsible AI: Navigating the Complex Terrain of Responsible AI Deployment https://koiosintelligence.ca/fr/responsible-ai-navigating-the-complex-terrain-of-responsible-ai-deployment/ Mon, 13 May 2024 08:55:00 +0000 https://koiosintelligence.ca/?p=2165 Responsible AI: Navigating the Complex Terrain of Responsible AI Deployment Published on May 8, 2024 In discussions about Artificial Intelligence (AI), the term "responsible AI deployment" is often used, yet its meaning can sometimes feel elusive and overly broad. The responsibility of deploying AI in an ethical manner should not [...]

The post Responsible AI: Navigating the Complex Terrain of Responsible AI Deployment appeared first on Koïos Intelligence.

]]>

Responsible AI: Navigating the Complex Terrain of Responsible AI Deployment

Published on May 8, 2024

Mohamed Hanini, CEO & Founder at Koïos Intelligence

In discussions about Artificial Intelligence (AI), the term “responsible AI deployment” is often used, yet its meaning can sometimes feel elusive and overly broad. The responsibility of deploying AI in an ethical manner should not be an abstract concept but a tangible practice upheld by the people and organizations implementing these systems.

Human Accountability in AI

At the core of responsible AI lies the responsibility of those who deploy it. More specifically, the individuals responsible for annotating data play a crucial role. It is well-understood that biases in gender, race, and other demographic factors can seep into AI models through the data they are fed. By adopting rigorous annotation practices, data scientists and engineers can significantly mitigate these biases. This approach shifts the focus towards responsible data handling and human accountability rather than placing undue emphasis on the AI itself to solve these issues.

The Pitfalls of Over-Reliance on AI

Often, there’s a tendency to rely on AI to generate new services or to introduce barriers that, ironically, might hinder its broader adoption. By focusing on “responsible data” and maintaining human accountability, we can avoid creating unnecessary services or barriers that complicate AI systems rather than making them more accessible and equitable.

Leading the Charge with Objective Reforms

I advocate for leading the peloton, metaphorically speaking, in AI deployment. This means taking a proactive and leadership role in implementing practical reforms. By setting clear standards and best practices, we can guide AI development in a direction that benefits all stakeholders involved.

Ethical Methodologies in AI

Several statistical methodologies, which have been a staple in statistical models for decades, offer valuable lessons for AI. Techniques like integration and regression tests provide frameworks for understanding and mitigating biases. By applying these time-tested methodologies, we can ensure that AI models are developed not only with technical proficiency but with ethical integrity as well.

Embracing responsible AI deployment involves a multidimensional approach. It requires a commitment to excellent data practices, proactive leadership in ethical AI development, and an adherence to proven statistical methodologies to ensure fairness and accuracy. As we continue to navigate the complexities of AI, let us commit to a path that upholds these principles, ensuring that AI serves humanity with equity and responsibility.

À propos de Koios Intelligence

Fondée en 2017, Koïos Intelligence a pour mission de donner à l’industrie de l’assurance et de la finance la nouvelle génération de systèmes intelligents et personnalisés qui s’appuient sur l’intelligence artificielle, les statistiques et la recherche opérationnelle. En combinant les connaissances des experts en assurance, en finance et en intelligence artificielle, Koïos développe de nouvelles technologies qui redéfinissent les interactions entre assureurs, les agents experts et leurs clients.

The post Responsible AI: Navigating the Complex Terrain of Responsible AI Deployment appeared first on Koïos Intelligence.

]]>
Appointment of Lyne Mercier as VP of Insurance Solutions and Head of US Sales at Koios Intelligence https://koiosintelligence.ca/fr/appointment-of-lyne-mercier-as-vp-of-insurance-solutions-and-head-of-us-sales-at-koios-intelligence/ Tue, 19 Mar 2024 16:48:50 +0000 https://koiosintelligence.ca/?p=2110 Appointment of Lyne Mercier as VP of Insurance Solutions and Head of US Sales at Koios Intelligence Published on March 20, 2024 MONTREAL, March 20, 2024 - We’re pleased to welcome Lyne Mercier to Koïos Intelligence as our new VP of Insurance Solutions and Head of US Sales! Lyne’s journey [...]

The post Appointment of Lyne Mercier as VP of Insurance Solutions and Head of US Sales at Koios Intelligence appeared first on Koïos Intelligence.

]]>

Nomination de Lyne Mercier en tant que VP des solutions d'assurance et responsable des ventes aux États-Unis

PUBLIÉ LE 20 MARS 2024

CLIQUEZ ICI

The post Appointment of Lyne Mercier as VP of Insurance Solutions and Head of US Sales at Koios Intelligence appeared first on Koïos Intelligence.

]]>
Appointment of Charles Dugas as Executive Vice President at Koios Intelligence https://koiosintelligence.ca/fr/appointment-of-charles-dugas-as-executive-vice-president/ Wed, 24 Jan 2024 21:33:27 +0000 https://prod.koiosintelligence.ca/?p=2060 Appointment of Charles Dugas as Executive Vice President at Koios Intelligence Published on January 24, 2024 MONTREAL, January 24, 2024 (Newswire.com) - Mohamed Hanini, founder, CEO, and CTO of Koïos Intelligence, is pleased to announce the appointment of Charles Dugas as Executive Vice President. "I've known Charles for 20 years [...]

The post Appointment of Charles Dugas as Executive Vice President at Koios Intelligence appeared first on Koïos Intelligence.

]]>

Nomination de Charles Dugas au poste de vice-président exécutif de Koïos Intelligence

Publié le 24 janvier 2024

CLIQUEZ ICI

The post Appointment of Charles Dugas as Executive Vice President at Koios Intelligence appeared first on Koïos Intelligence.

]]>
Koïos Intelligence concludes $6.5M round of funding to revolutionize insurance shopping https://koiosintelligence.ca/fr/koios-intelligence-concludes-6-5m-round-of-funding-to-revolutionize-insurance-shopping/ Thu, 04 May 2023 16:57:56 +0000 https://prod.koiosintelligence.ca/?p=1627 Koïos Intelligence concludes $6.5M round of funding to revolutionize insurance shopping Published on May 4, 2023 Montreal, May 3, 2023 - Koïos Intelligence, a Quebec-based start-up that provides insurance professionals with a conversational assistant powered by artificial intelligence (AI), announced today to have concluded a $6.5 million financing round with the participation of [...]

The post Koïos Intelligence concludes $6.5M round of funding to revolutionize insurance shopping appeared first on Koïos Intelligence.

]]>

Koïos Intelligence conclut une ronde de financement de 6,5 M$ pour révolutionner le magasinage d’assurances

Publié le 4 mai 2023

The post Koïos Intelligence concludes $6.5M round of funding to revolutionize insurance shopping appeared first on Koïos Intelligence.

]]>
KOÏOS Intelligence names Nicolas Audibert as Head of Financial Services https://koiosintelligence.ca/fr/koios-intelligence-names-nicolas-audibert-as-head-of-financial-services/ Thu, 27 Oct 2022 14:23:49 +0000 https://prod.koiosintelligence.ca/?p=1508 Nicolas Audibert, a recognized leader in the field of finance joins Koïos Intelligence as a Head of Financial Services Published on October 28, 2022 Koïos Intelligence is proud to welcome Nicolas Audibert as Head of Financial Services. In this role, Nicolas will develop Koïos’ strategy in key pillars such as commercial [...]

The post KOÏOS Intelligence names Nicolas Audibert as Head of Financial Services appeared first on Koïos Intelligence.

]]>

Nicolas Audibert, leader reconnu dans le domaine de la finance, rejoint Koïos Intelligence en tant que Head of Financial Services.

Publié le 28 octobre 2022

CLIQUEZ ICI

The post KOÏOS Intelligence names Nicolas Audibert as Head of Financial Services appeared first on Koïos Intelligence.

]]>
From Health Care to Insurance Companies, AI Chatbots Are Our Next Best Tool Against Global Emergencies https://koiosintelligence.ca/fr/from-health-care-to-insurance-companies-ai-chatbots-are-our-next-best-tool-against-global-emergencies-2/ Tue, 19 Jul 2022 16:04:13 +0000 https://prod.koiosintelligence.ca/?p=1438 From Health Care to Insurance Companies, AI Chatbots Are Our Next Best Tool Against Global Emergencies Published on March 3, 2023 Overwhelmed emergency hospital hotlines. Shortages of doctors and nurses. No sector of the health care industry is being spared against the current pandemic, forcing it to quickly [...]

The post From Health Care to Insurance Companies, AI Chatbots Are Our Next Best Tool Against Global Emergencies appeared first on Koïos Intelligence.

]]>

Des soins de santé aux compagnies d'assurance, les chatbots d'IA sont notre prochain meilleur outil pour lutter contre les urgences mondiales

Published on March 3, 2023

Mohamed Hanini, Fondateur, PDG et Chef de la technologie
Pour consulter l'article original, cliquez ici.

The post From Health Care to Insurance Companies, AI Chatbots Are Our Next Best Tool Against Global Emergencies appeared first on Koïos Intelligence.

]]>
The State of Artificial Intelligence and Its Applications https://koiosintelligence.ca/fr/the-state-of-artificial-intelligence-and-its-applications-old/ Tue, 19 Jul 2022 16:00:17 +0000 https://prod.koiosintelligence.ca/?p=1436 The State of Artificial Intelligence and Its Applications Published on July 6, 2022 “Is the work you do “hacking,” or is it science? Do you just try things until they work, or do you start with a theoretical insight?” “It’s very much an interplay between intuitive insights, theoretical [...]

The post The State of Artificial Intelligence and Its Applications appeared first on Koïos Intelligence.

]]>

L'état de l'intelligence artificielle et ses applications

Publié le 6 juillet 2022

Mohamed Hanini, Fondateur, PDG et Chef de la technologie

“Is the work you do “hacking,” or is it science? Do you just try things until they work, or do you start with a theoretical insight?”

“It’s very much an interplay between intuitive insights, theoretical modeling, practical implementations, empirical studies, and scientific analyses. The insight is creative thinking, the modeling is mathematics, the implementation is engineering and sheer hacking, the empirical study and the analysis are actual science. What I am most fond of are beautiful and simple theoretical ideas that can be translated into something that works”

– Yann Lecun

What triggered the Artificial Intelligence Revolution?

Cognitive science is a scientific discipline whose object is the understanding and simulation of the mechanisms of human thought, animal or artificial. Artificial intelligence is the set of theories used to implement applications capable of simulating intelligence in different contexts. It is a complex information processing system capable of learning from examples or experiences, thus conveying knowledge and replicating human problem-solving.

Among the fields of study of artificial intelligence, we find statistical learning or machine learning (ML), it covers the analysis, design, and implementation of algorithms allowing to learn from a data set called “training set” to perform a specific task.

Machine learning, as used in Today’s applications, can be argued to be an art in itself. One we must first understand that the application of such techniques depends profoundly on the problem at hand and thus the decision about the model architecture, the methods that should be used and how estimation should be performed depends on the experience of the data scientist implementing the solution. The success of a given application and how efficient a problem is solved depends heavily on the skills and experience of the person implementing it. This is even more so since the success of Deep Learning.

Indeed, the past decade has seen several impressive breakthroughs in the field of artificial intelligence, due especially, to the recent advances in Deep Learning; a subfield of machine learning. In this article, we will discuss some of the most successful and well-known applications of Deep Learning and the context behind their success. In order to do so, we will need to discuss the concept of artificial neural networks as they are at the heart of the artificial intelligence revolution brought about by Deep Learning.

Every machine learning algorithm falls into one of the following two categories: Supervised Learning or Unsupervised Learning (a third category would be Reinforcement Learning but such a categorization will be left for a future discussion). Supervised Learning consists of predicting one or several outputs based on a labeled training set. As for Unsupervised Learning, it is a matter of bringing together bodies with common features, a useful approach to identify trends in the data or to identify common themes in documents. In this context, there is a family of models that use the concept of artificial neural networks to perform supervised and unsupervised tasks.

An artificial neural network is a collection of connected nodes (called artificial neurons) that mimic the structure of human brain where a vast network of interconnected units that are behind the way we process information.

Figure 1: An example of an artificial neuron

A single artificial neuron (Figure 1) receives an input (data) that then is transformed according to a very simple linear function (think of a statistical regression), then smoothed out through an activation function creating an output. Under this scheme, a single neuron can be thought as reproducing a simple linear regression model and an artificial neural network is a structure is then a more complex and flexible model that stacks regression upon regressions.

What is Deep Learning?

Artificial neural network structures can have many interconnected layers of neurons. The more layers, the deeper the network is (see Figure 2). The notion of depth of a network of neurons implies the presence of layers arranged in such a way that neurons receive information from neurons in the previous layer until it reaches the last layer where it predicts an output.

Figure 2: An example of a multi-layer perceptron

The originality of all this is that the results of the first layer of neurons will serve as input to the calculation of the following. This layered operation is what is called deep learning. The more layers and neurons the higher the number of parameters of the model and hence the more complex the task of training the model to reproduce or explain a certain phenomenon. Deep learning uses several non-linear layers to learn from data the representation of generally complex functions and this is achieved via a collection of methods and techniques that make the calibration of a high number of parameters computationally possible.

The intuition behind the fact that deep learning works so well is that you could see it has being a complex network of combined (non-linear) regression where one neuron is actually a simple logistic regression (or some variation of it) – since regression works so well it is not unreasonable to think that a combination of regressions would work even better!

Such structures have been around in the scientific literature for several decades however it is not until recent developments, both technological and theoretical, that allows us now to train very deep networks capable of performing at human-like accuracy at very complex tasks such as image and text recognition.

 

A brief history and the background of Deep-Learning

Machine learning has evolved through the years going through several phases starting in the early 90’s. From 1995-2005, the focus was on natural language as well as research. During this period, SVMs and logistic regressions were more used (due to their performance) than neural networks. Then there was a come-back to neural networks that started in the 80’s. The concept of deep neural networks goes back at least as far as 1980 with the introduction of the first multi-layer artificial neural networks called the multilayer perceptron.

In the early 2000s, some researchers focused on neural networks, and more specifically on deep neural networks. With the lack of data and the limited performance of computers, this technology did not perform to its full potential at the time. Nonetheless, a few researchers continue working in this direction, a few names we can mention are Yoshua Bengio and Yan Lecun who are the forerunners of deep learning alongside Geoffrey Hinton.

In the 80’s, a breakthrough was achieved and for the first time, a deep neural network was trained and capable of performing at unprecedented accuracies in tasks such as image recognition. Ever since different architectures have been put forward and trained with a variety of tasks in mind.

The announcement of the 2012 ImageNet challenge results is the trigger of the breakthrough of the deep learning. Geoffrey Hinton, Ilya Sutskever, and Alex Krizhevsky from the University of Toronto submitted a deep convolutional neural network architecture called AlexNet. For the first time, a deep neural network was trained and capable of performing at unprecedented accuracies in tasks such as image recognition. Ever since different architectures have been put forward and trained with a variety of tasks in mind.

Figure 3: Timeline of scalable machine learning

There is an interesting analogy between deep learning architectures and the way our brain functions. In brain image processing, for instance, neuroscience seems to have found an indication that image recognition is made through a multi-step procedure where simple tasks are performed then combined or stacked in order to finally to produce an understanding of a given image. In deep learning, these simple tasks are performed by layers in the architecture that learn to recognize simple features before assembling all the information into a final output. This layered architecture is found across most instances of human behavior, generally one tends to learn to perform tasks in increasing order of complexity. We start by learning basic assignments to finally conceptualize them. This is the technology behind the boom of artificial intelligence that we are living now where algorithms are being trained to do very complex tasks at the human-like level of performance. Image recognition, text understanding, voice recognition, automatic translation, and so on. This revolution is rapidly being integrated in our daily life thanks to the vision of a handful of private players (Google, Apple, Facebook, and Amazon) and to a growing start-up ecosystem that uses this technology to disrupt and bring innovation to all fields of application like the Chinese Baidu, Alibaba and Tencent; and more recently the Montreal-based startup Element AI. At the origin of all this, there are the visionary scientists who continued working in this area despite the challenges and initial failures.

Behind this revolution, there is a solid scientific foundation and mathematics, statistics and computer science at the heart of the techniques and methods of what is commonly referred to as artificial intelligence. In order to implement and seemingly integrate this technology into existing processes in industry, a new breed of professionals and technicians is needed. One with solid foundations in mathematics, a deep understanding of the theory and practice behind the models and highly skilled the computer implementation of such architectures.

Machine Learning applications

In this context of great enthusiasm for everything AI-related, there is an unprecedented amount of economic activity that is being created around this scientific field (see Figure 4). The financial and insurance sector is no exception and it is in the process of integrating these new technologies as well. Machine learning is expected to have a profound impact on all the structures of the financial and the insurance industry. Within a few years, changes will be brought about by this technology at all levels of financial activities such as trading, risk analysis and IT, risk management and credit granting as well as portfolio management. Any instance where decisions have to be made based on a human understanding of a particular situation or environment can be potentially automatized. In the insurance industry, machine learning will improve existing relationships with customers and sales agents, and finding ways to turn data into business value to drive profitable growth.

These changes are not only driven by the recent availability of the mathematical and computational technology but also by the rapid evolution of technology in other fields that allow for an impressive amount of data collection and that is changing the environment and way in which business and daily lives are conducted. Take, for instance, energy consumption and production. The declining costs of solar and wind technologies led to increasing interest and opportunities for renewable energy systems. Smart grid technology is the key to an efficient use of distributed energy resources. The complexity and heterogeneity of the smart grid (electric vehicles, smart meters, intermittent renewable energy, smart buildings, etc.) and the high volume of information to be processed created a natural need for artificial intelligence techniques that could make sense and exploit this new environment in an efficient way.

We now discuss in more detail some of the instances and processes in finance and insurance where machine learning can be successfully applied and called to be a game changer.

Figure 4: Machine learning methods and its applications

Here are six key applications of artificial intelligence in the financial and insurance industry and healthcare:

1.   Assessing risk: loan and insurance underwriters have relied on limited information provided on applications to assess the risk exposure of their customers. There is an unprecedented amount of personalized data and metrics that are being harvested and stored through traditional means as well as via connected intelligent applications and systems that are now part of daily life. This information has the potential to draw a portrait of a given individual behavior in most relevant aspects of life. What we eat, we buy, places we go to, levels of physical activity, people we meet, health metrics, driving behavior, and habits, etc. are now information that is potentially available along more traditional and readily available characteristics such as age, gender employment, credit score, driving record, medical history, to name a few. Machine learning can play a key role to adjust existing models by including all these metrics.

2.   Healthcare: with the increasing cost of healthcare and the availability of the detailed individualized clinical, demographic and behavioral data; machine learning is finding its way into applications seeking to automatize healthcare processes ranging from diagnostics to prevention medicine. Patient evaluation procedures, such as assessing the likelihood that a patient will be readmitted to a hospital after treatment, can benefit from machine learning enhanced decision-making algorithms that will optimize the number of physicians and nurses involved in a given file while maintaining the quality of service. With machine learning algorithms, we can examine scans and images faster and with greater accuracy before benign tumors become malignant. These AI assistants reduce healthcare time of service and costs since screenings require so much time from doctors and technical personnel.

3.   Anomaly detection: traditional rule-based models approach of identifying anomalies or rare events by responding to alerts based on static thresholds are not suited to Today’s dynamic environment where the amount of data available for a single profile is as large as diverse. For a fraud detection purpose, most of the crucial information is unstructured data, which are hard to analyze and thus they are rarely taken into account. This is where deep learning can find an application and play a key role in transforming the business of fraud detection by using unstructured data to provide valuable insight thus enhancing the accuracy of our solution while reducing false alerts triggered by statics thresholds.

4.   Natural Language Processing: the state-of-the-art in Natural Language Processing (NLP) algorithms have attained levels of human-like performance. Automatic translation, sentiment analysis, and text classification are some examples of this technology. Applications of this technology are the development of chat bots or question-answering systems capable of understanding complex textual commands and respond in a human-like fashion. Such algorithms, commonly called chatbots, are going to replace gradually the customer service agents, thus drastically improving how core operations are run and reduce their costs. We have to distinguish between Retrieval-Based (easier) and Generative (harder) models approach. The first model uses a repository of predefined responses and kind of heuristic to pick an appropriate response from a fixed set based on the input and the context. The second model generates a new response from scratch. Deep Learning techniques can be used for both models but research seems to be moving into the generative direction. Customer service and corporate management will be the first to benefit from these applications in the financial and insurance sector.

5.   Digitization: Optical Character Recognition (OCR) deals with processing images and translating them into text. OCR has incredible cost-savings potential in high-volume highly-manual low value-added activities such as processing bills and invoices. Another application is pattern recognition, which is an automated process of identifying features in an image, enabling biometrics and signature recognition, amongst other things, and which has useful applications in fraud detection and security.

6. Image Recognition: over the past five years, we have seen an important development in image recognition and classification, automatic translation, autonomous driving, and music generation. These advances were due the deep learning approaches. Learning from images to recognize faces, objects, situations and make queries about images is not only possible now but it is achieved with unprecedented precision. Identifying faces, objects, gender, number of elements or recognizing the breed of a dog on a photograph, are tasks that can now be performed using deep neural network architectures. In this context, image classification has a great potential to be introduced in insurance claim processing. There are now millions of classified images that constitute a solid knowledge base to develop insurance algorithms that take an image as input in the decision-making process. Fraudulent claims or simple claim assessment can be automatized via images thus stream-lining the claim filing process.

We must say that the choice of the picture below (see Picture 1) is not arbitrary. If we were in the 1990s, looking at picture 1, we would have probably thought of a science fiction photo. From now on, this dream has become a reality. Indeed, drones are already part of our ecosystem.

Machine learning (ML) integrated into drones will allow insurers to significantly reduce their cost. According to the Insurance Information Institute, fraudulent claims account for 10% of the losses in property and casualty insurance.

An extreme event for which an insurer receives a significant number of claims for damages that were caused prior to the event. Drones can be used to take pictures of insured houses periodically to protect insurers against fraudulent claims following a natural catastrophe or other extreme events, insurers are protecting themselves against this type of fraudulent claims. With machine learning, we are able to automatically process aerial images, evaluate the damage caused by hail and evaluate the extent of the damage.

Picture 1: A drone delivery heading towards the city center

Will AI replace artists?

An interesting feature of deep learning structures is that just as they can be trained to recognize/classify elements (sound, image, text, etc.), they can also be trained to reproduce original elements that follow or resemble observed examples. This has produced interest applications where music, text, and paintings can be reproduced by AI algorithms thus giving the impression of witnessing art creation at work. Nonetheless, this remains an illusion since even-though we are able to produce algorithms that learn how to paint or write music like golden-age masters, this is just a statistical methodology at play. Now, more than ever the presence of an artist or a human element with the sensitivity and experience is essential to the application of new techniques for the common good.

Final word

While we may be far from having true artificial intelligence the way we’ve seen it depicted in countless movies; that is sentient intelligence with self-awareness, there has been a dramatic technological progression in this science and this trend will surely continue. It is now part of the landscape and it is premating daily life in all its subtleties. Demand for services is evolving and will follow these trends in technology. Insurance and finance are not an exception and the sector must step up to the challenge and start equipping themselves with the tools and expertise needed to deliver the next generation of products. This will mean changing traditional approaches in risk management, Insurance, marketing, pricing, etc. The possibilities are endless and the time is now to start moving in this direction. The rest of the economy is already on the move!

À propos de Koïos Intelligence

Fondée en 2017, Koïos Intelligence a pour mission de donner à l’industrie de l’assurance et de la finance la nouvelle génération de systèmes intelligents et personnalisés qui s’appuient sur l’intelligence artificielle, les statistiques et la recherche opérationnelle. En combinant les connaissances des experts en assurance, en finance et en intelligence artificielle, Koïos développe de nouvelles technologies qui redéfinissent les interactions entre assureurs, les agents experts et leurs clients.

Koïos Intelligence agrandit son équipe et recrute activement pour plusieurs postes. Pour plus d'informations :

CLIQUEZ ICI

The post The State of Artificial Intelligence and Its Applications appeared first on Koïos Intelligence.

]]>
An Application That Could Revolutionize The Insurance Industry https://koiosintelligence.ca/fr/une-application-qui-pourrait-bouleverser-le-milieu-de-lassurance/ Tue, 19 Jul 2022 15:22:46 +0000 https://prod.koiosintelligence.ca/?p=1432 An application that could revolutionize the insurance industry With its Olivo app, Koïos Intelligence intends to revolutionize a field that many consumers still don't fully understand. Published May 5, 2020 Two years ago, David Stréliski, Chief Executive Officer and Chairman of the Board of Koïos Intelligence promised "a unique, easy-to-use [...]

The post An Application That Could Revolutionize The Insurance Industry appeared first on Koïos Intelligence.

]]>

Une application qui pourrait bouleverser le milieu de l’assurance

Avec son application Olivo, Koïos Intelligence compte bien révolutionner ce domaine que nombre de consommateurs ne comprennent pas encore bien.

Publié le 5 mai 2020

Alizée Calza

Il y a deux ans, David Stréliski, chef du Conseil et président du conseil d’administration de Koïos Intelligence

promettait « un outil unique, facile d’utilisation et accessible par tous les joueurs de l’écosystème de l’assurance, autant par les consommateurs, que les courtiers et les assureurs » qui fonctionnerait comme un « Airbnb de l’assurance ».

Après un gros travail de développement, Olivo est enfin prêt à être lancé sur le marché et risque bien de bouleverser le domaine de l’assurance. Cet outil se basant sur l’intelligence artificielle (IA) et le traitement automatique du langage permet de répondre aux questions des clients, gérer leurs requêtes et surtout les relier aux assureurs et aux courtiers.

Avec cette application, Mohamed Hanini, PDG, fondateur et Chef scientifique de Koïos Intelligence, précise que le but n’est pas d’éliminer le courtier, mais bien d’accélérer son travail.

« On est un éditeur de logiciel, pas un assureur. On ne vend pas de l’assurance, mais on offre aux assureurs, aux compagnies d’assurance et aux firmes de courtage, une plateforme en assurance qui permet de fluidifier le processus de la souscription. On commercialise une plateforme chez les courtiers et les grandes compagnies d’assurance et c’est à eux de convaincre les consommateurs », explique-t-il en entrevue avec Finance et Investissement..

Accélérer un long processus

Proposer un produit d’assurance vie à un client prend énormément de temps pour un courtier. Il faut rencontrer le client, lui expliquer les produits, établir un prix, faire une soumission à l’assureur et cela n’offre aucune garantie que le client ne décidera pas finalement de refuser l’offre.

Olivo entre directement en relation avec le client qui peut discuter avec lui, lui poser ses questions et obtenir des réponses sans qu’un humain n’intervienne. Il peut finalement offrir une proposition au client en fonction de leur conversation et des informations fournies.

« L’application se base sur la moyenne des prix et donne la cotation selon la valeur de la couverture », décrit Mohamed Hanini.

Si le programme permet d’éviter au conseiller de convaincre le client, il permet aussi d’accélérer la prise d’informations. Effectivement, le système de dialogue vient avec un tableau de bord pour l’assureur et le courtier qui réunit les informations et permet de voir les produits qui manquent au client ou ceux qui se recoupent.

« C’est comme un système de triage, finalement, commente Mohamed Hanini. Il y a toute une saisie automatique de données ou d’informations en temps réel. Ce qui permet d’accélérer tout le processus de souscription d’un courtier ou d’un assureur. »

En plus de l’assurance vie, Olivo fonctionne également pour l’assurance de dommage, l’assurance voyage et actuellement Koïos Intelligence se penche sur l’assurance maladie pour que celle-ci soit également disponible.

Un système qui mesure l’intention du consommateur

Ce qui est impressionnant avec Olivo c’est qu’il s’agit réellement d’un programme avec lequel le consommateur peut discuter, affirme Mohamed Hanini. Actuellement, la plupart des systèmes de dialogue offerts sur le marché sont guidés. « On nous parle d’IA, mais clairement il y a des règles de décision derrière. »

Olivo, propose pour sa part une conversation ouverte. Même pas besoin d’interface, le consommateur peut dialoguer avec une boîte, même si bien sûr il peut aussi utiliser le clavardage. « On n’a même pas besoin d’ordinateur, ça pourrait être indexé à Alexa de l’assurance », ajoute le PDG de la startup.

Comme le programme mesure l’intention du consommateur, il est capable de comprendre ce qu’il veut dire malgré les fautes de diction ou d’orthographe.

« Le traitement de langage naturel est basé sur des mesures de similarité en prenant en considération le contexte », explique Mohamed Hanini. On propose un système de dialogue dynamique qui offre une expérience client sans équivalent. Ce qui est très intéressant, c’est que via une conversation user friendly, on est en mesure de remplir le formulaire et avoir une cotation. »

« Pour nous, l’expérience client, donc le consommateur, est au centre du produit. Si on veut réussir avec les assureurs, il faut vraiment que le client soit séduit par la techno », ajoute-t-il.

Une belle croissance en vue

Malgré la pandémie actuelle, Koïos Intelligence prévoit un futur brillant pour Olivo. Puisque leur produit est en ligne, la société n’a été que peu impactée par la pandémie et envisage même de nombreuses embauches en 2020.

Koïos Intelligence compte déjà deux clients, deux signatures fermes obtenues fin 2019, début 2020. La première phase de lancement avec eux est prévue en septembre. « Ça nous prend 3-4 mois pour personnaliser l’application pour les clients, donc pour qu’elle fonctionne selon leurs formulaires », explique Mohamed Hanini.

En plus de ces clients, la compagnie est en discussion avancée avec une dizaine de clients.

« Quand je dis discuter, on parlait de l’intégration et du prix. On est genre à la sixième rencontre, donc c’est assez avancé », précise Mohamed Hanini.

En raison de ces développements, la startup, qui compte une vingtaine d’employés entre Montréal et leur structure en Tunisie, compte faire de nombreuses embauches d’ici la fin de l’année. « Ça va dépendre bien sûr de la phase commerciale, mais on sera en mesure d’atteindre 45-50 personnes à la fin de l’année dans le meilleur scénario. Dans le scénario moyen, on sera entre 35-40. »

Koïos Intelligence compte toutefois déjà une dizaine de postes à combler pour des scientifiques de données et des développeurs.

Finalement, Koïos Intelligence prévoit une grande levée de fonds en automne. La startup estime que le moment est venu de demander de l’aide aux bailleurs de fonds pour se développer à l’international, notamment en Amérique du Nord et surtout sur le marché américain. « C’est là où il y a le plus d’assureurs au monde et là où ce genre de produit pourra être révolutionnaire », commente le PDG.

La startup se tourne seulement maintenant vers les rondes de financement, car ses fondateurs refusaient de demander des fonds en proposant seulement une idée.

« Certaines startups évoluent de manière spéculative. Nous on voulait développer un beau produit, avoir des ventes et ensuite lever des fonds de manière organique. Selon moi, c’est comme cela qu’une compagnie s’enracine », conclut-il.

Pour consulter l'article original, cliquez ici

The post An Application That Could Revolutionize The Insurance Industry appeared first on Koïos Intelligence.

]]>